3.11 \(\int \frac{c+d x^2}{a-b x^4} \, dx\)

Optimal. Leaf size=86 \[ \frac{\left (\sqrt{b} c-\sqrt{a} d\right ) \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/4}}+\frac{\left (\sqrt{a} d+\sqrt{b} c\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/4}} \]

[Out]

((Sqrt[b]*c - Sqrt[a]*d)*ArcTan[(b^(1/4)*x)/a^(1/4)])/(2*a^(3/4)*b^(3/4)) + ((Sq
rt[b]*c + Sqrt[a]*d)*ArcTanh[(b^(1/4)*x)/a^(1/4)])/(2*a^(3/4)*b^(3/4))

_______________________________________________________________________________________

Rubi [A]  time = 0.100966, antiderivative size = 86, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167 \[ \frac{\left (\sqrt{b} c-\sqrt{a} d\right ) \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/4}}+\frac{\left (\sqrt{a} d+\sqrt{b} c\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/4}} \]

Antiderivative was successfully verified.

[In]  Int[(c + d*x^2)/(a - b*x^4),x]

[Out]

((Sqrt[b]*c - Sqrt[a]*d)*ArcTan[(b^(1/4)*x)/a^(1/4)])/(2*a^(3/4)*b^(3/4)) + ((Sq
rt[b]*c + Sqrt[a]*d)*ArcTanh[(b^(1/4)*x)/a^(1/4)])/(2*a^(3/4)*b^(3/4))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 16.0188, size = 76, normalized size = 0.88 \[ - \frac{\left (\sqrt{a} d - \sqrt{b} c\right ) \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}}{2 a^{\frac{3}{4}} b^{\frac{3}{4}}} + \frac{\left (\sqrt{a} d + \sqrt{b} c\right ) \operatorname{atanh}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}}{2 a^{\frac{3}{4}} b^{\frac{3}{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((d*x**2+c)/(-b*x**4+a),x)

[Out]

-(sqrt(a)*d - sqrt(b)*c)*atan(b**(1/4)*x/a**(1/4))/(2*a**(3/4)*b**(3/4)) + (sqrt
(a)*d + sqrt(b)*c)*atanh(b**(1/4)*x/a**(1/4))/(2*a**(3/4)*b**(3/4))

_______________________________________________________________________________________

Mathematica [A]  time = 0.0469434, size = 95, normalized size = 1.1 \[ \frac{2 \left (\sqrt{b} c-\sqrt{a} d\right ) \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )-\left (\sqrt{a} d+\sqrt{b} c\right ) \left (\log \left (\sqrt [4]{a}-\sqrt [4]{b} x\right )-\log \left (\sqrt [4]{a}+\sqrt [4]{b} x\right )\right )}{4 a^{3/4} b^{3/4}} \]

Antiderivative was successfully verified.

[In]  Integrate[(c + d*x^2)/(a - b*x^4),x]

[Out]

(2*(Sqrt[b]*c - Sqrt[a]*d)*ArcTan[(b^(1/4)*x)/a^(1/4)] - (Sqrt[b]*c + Sqrt[a]*d)
*(Log[a^(1/4) - b^(1/4)*x] - Log[a^(1/4) + b^(1/4)*x]))/(4*a^(3/4)*b^(3/4))

_______________________________________________________________________________________

Maple [B]  time = 0.006, size = 122, normalized size = 1.4 \[{\frac{c}{4\,a}\sqrt [4]{{\frac{a}{b}}}\ln \left ({1 \left ( x+\sqrt [4]{{\frac{a}{b}}} \right ) \left ( x-\sqrt [4]{{\frac{a}{b}}} \right ) ^{-1}} \right ) }+{\frac{c}{2\,a}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({x{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}} \right ) }-{\frac{d}{2\,b}\arctan \left ({x{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}} \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+{\frac{d}{4\,b}\ln \left ({1 \left ( x+\sqrt [4]{{\frac{a}{b}}} \right ) \left ( x-\sqrt [4]{{\frac{a}{b}}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((d*x^2+c)/(-b*x^4+a),x)

[Out]

1/4*c*(a/b)^(1/4)/a*ln((x+(a/b)^(1/4))/(x-(a/b)^(1/4)))+1/2*c*(a/b)^(1/4)/a*arct
an(x/(a/b)^(1/4))-1/2*d/b/(a/b)^(1/4)*arctan(x/(a/b)^(1/4))+1/4*d/b/(a/b)^(1/4)*
ln((x+(a/b)^(1/4))/(x-(a/b)^(1/4)))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-(d*x^2 + c)/(b*x^4 - a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.331886, size = 1019, normalized size = 11.85 \[ \frac{1}{4} \, \sqrt{\frac{a b \sqrt{\frac{b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x +{\left (a^{3} b^{2} d \sqrt{\frac{b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - a b^{2} c^{3} - a^{2} b c d^{2}\right )} \sqrt{\frac{a b \sqrt{\frac{b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}}\right ) - \frac{1}{4} \, \sqrt{\frac{a b \sqrt{\frac{b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x -{\left (a^{3} b^{2} d \sqrt{\frac{b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - a b^{2} c^{3} - a^{2} b c d^{2}\right )} \sqrt{\frac{a b \sqrt{\frac{b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}}\right ) - \frac{1}{4} \, \sqrt{-\frac{a b \sqrt{\frac{b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x +{\left (a^{3} b^{2} d \sqrt{\frac{b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + a b^{2} c^{3} + a^{2} b c d^{2}\right )} \sqrt{-\frac{a b \sqrt{\frac{b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}}\right ) + \frac{1}{4} \, \sqrt{-\frac{a b \sqrt{\frac{b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x -{\left (a^{3} b^{2} d \sqrt{\frac{b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + a b^{2} c^{3} + a^{2} b c d^{2}\right )} \sqrt{-\frac{a b \sqrt{\frac{b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-(d*x^2 + c)/(b*x^4 - a),x, algorithm="fricas")

[Out]

1/4*sqrt((a*b*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + 2*c*d)/(a*b)
)*log(-(b^2*c^4 - a^2*d^4)*x + (a^3*b^2*d*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*d^
4)/(a^3*b^3)) - a*b^2*c^3 - a^2*b*c*d^2)*sqrt((a*b*sqrt((b^2*c^4 + 2*a*b*c^2*d^2
 + a^2*d^4)/(a^3*b^3)) + 2*c*d)/(a*b))) - 1/4*sqrt((a*b*sqrt((b^2*c^4 + 2*a*b*c^
2*d^2 + a^2*d^4)/(a^3*b^3)) + 2*c*d)/(a*b))*log(-(b^2*c^4 - a^2*d^4)*x - (a^3*b^
2*d*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - a*b^2*c^3 - a^2*b*c*d^
2)*sqrt((a*b*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + 2*c*d)/(a*b))
) - 1/4*sqrt(-(a*b*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - 2*c*d)/
(a*b))*log(-(b^2*c^4 - a^2*d^4)*x + (a^3*b^2*d*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a
^2*d^4)/(a^3*b^3)) + a*b^2*c^3 + a^2*b*c*d^2)*sqrt(-(a*b*sqrt((b^2*c^4 + 2*a*b*c
^2*d^2 + a^2*d^4)/(a^3*b^3)) - 2*c*d)/(a*b))) + 1/4*sqrt(-(a*b*sqrt((b^2*c^4 + 2
*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - 2*c*d)/(a*b))*log(-(b^2*c^4 - a^2*d^4)*x -
(a^3*b^2*d*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + a*b^2*c^3 + a^2
*b*c*d^2)*sqrt(-(a*b*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - 2*c*d
)/(a*b)))

_______________________________________________________________________________________

Sympy [A]  time = 1.99784, size = 110, normalized size = 1.28 \[ - \operatorname{RootSum}{\left (256 t^{4} a^{3} b^{3} - 64 t^{2} a^{2} b^{2} c d - a^{2} d^{4} + 2 a b c^{2} d^{2} - b^{2} c^{4}, \left ( t \mapsto t \log{\left (x + \frac{- 64 t^{3} a^{3} b^{2} d + 12 t a^{2} b c d^{2} + 4 t a b^{2} c^{3}}{a^{2} d^{4} - b^{2} c^{4}} \right )} \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d*x**2+c)/(-b*x**4+a),x)

[Out]

-RootSum(256*_t**4*a**3*b**3 - 64*_t**2*a**2*b**2*c*d - a**2*d**4 + 2*a*b*c**2*d
**2 - b**2*c**4, Lambda(_t, _t*log(x + (-64*_t**3*a**3*b**2*d + 12*_t*a**2*b*c*d
**2 + 4*_t*a*b**2*c**3)/(a**2*d**4 - b**2*c**4))))

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.290926, size = 347, normalized size = 4.03 \[ \frac{\sqrt{2}{\left (\left (-a b^{3}\right )^{\frac{1}{4}} b^{2} c + \left (-a b^{3}\right )^{\frac{3}{4}} d\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x + \sqrt{2} \left (-\frac{a}{b}\right )^{\frac{1}{4}}\right )}}{2 \, \left (-\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{4 \, a b^{3}} + \frac{\sqrt{2}{\left (\left (-a b^{3}\right )^{\frac{1}{4}} b^{2} c + \left (-a b^{3}\right )^{\frac{3}{4}} d\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x - \sqrt{2} \left (-\frac{a}{b}\right )^{\frac{1}{4}}\right )}}{2 \, \left (-\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{4 \, a b^{3}} + \frac{\sqrt{2}{\left (\left (-a b^{3}\right )^{\frac{1}{4}} b^{2} c - \left (-a b^{3}\right )^{\frac{3}{4}} d\right )}{\rm ln}\left (x^{2} + \sqrt{2} x \left (-\frac{a}{b}\right )^{\frac{1}{4}} + \sqrt{-\frac{a}{b}}\right )}{8 \, a b^{3}} - \frac{\sqrt{2}{\left (\left (-a b^{3}\right )^{\frac{1}{4}} b^{2} c - \left (-a b^{3}\right )^{\frac{3}{4}} d\right )}{\rm ln}\left (x^{2} - \sqrt{2} x \left (-\frac{a}{b}\right )^{\frac{1}{4}} + \sqrt{-\frac{a}{b}}\right )}{8 \, a b^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-(d*x^2 + c)/(b*x^4 - a),x, algorithm="giac")

[Out]

1/4*sqrt(2)*((-a*b^3)^(1/4)*b^2*c + (-a*b^3)^(3/4)*d)*arctan(1/2*sqrt(2)*(2*x +
sqrt(2)*(-a/b)^(1/4))/(-a/b)^(1/4))/(a*b^3) + 1/4*sqrt(2)*((-a*b^3)^(1/4)*b^2*c
+ (-a*b^3)^(3/4)*d)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(-a/b)^(1/4))/(-a/b)^(1/4)
)/(a*b^3) + 1/8*sqrt(2)*((-a*b^3)^(1/4)*b^2*c - (-a*b^3)^(3/4)*d)*ln(x^2 + sqrt(
2)*x*(-a/b)^(1/4) + sqrt(-a/b))/(a*b^3) - 1/8*sqrt(2)*((-a*b^3)^(1/4)*b^2*c - (-
a*b^3)^(3/4)*d)*ln(x^2 - sqrt(2)*x*(-a/b)^(1/4) + sqrt(-a/b))/(a*b^3)